435 research outputs found

    On Exact Superpotentials, Free Energies and Matrix Models

    Full text link
    We discuss exact results for the full nonperturbative effective superpotentials of four dimensional N=1\mathcal{N}=1 supersymmetric U(N) gauge theories with additional chiral superfield in the adjoint representation and the free energies of the related zero dimensional bosonic matrix models with polynomial potentials in the planar limit using the Dijkgraaf-Vafa matrix model prescription and integrating in and out. The exact effective superpotentials are produced including the leading Veneziano-Yankielowicz term directly from the matrix models. We also discuss how to use integrating in and out as a tool to do random matrix integrals in the large NN limit.Comment: 14 pages; v2: typos corrected; v3: the scheme for computing exact superpotentials including both the Veneziano-Yankielowicz term and all instanton corrections directly using matrix models is emphasized and references added, to appear in JHE

    Note on the pseudo-Nambu-Goldstone Boson of Meta-stable SUSY Violation

    Full text link
    Many models of meta-stable supersymmetry (SUSY) breaking lead to a very light scalar pseudo-Nambu Goldstone boson (PNGB), P, associated with spontaneous breakdown of a baryon number like symmetry in the hidden sector. Current particle physics data provide no useful constraints on the existence of P. For example, the predicted decay rates for both K --> pi + P, b--> s + P and Upsilon --> photon + P are many orders of magnitude below the present experimental bounds. We also consider astrophysical implications of the PNGB and find a significant constraint from its effect on the evolution of red giants. This constraint either rules out models with a hidden sector gauge group larger than SU(4), or requires a new intermediate scale, of order at most 10^{10} GeV, at which the hidden sector baryon number is explicitly broken.Comment: 17 pages, 3 figures. Version 2: minor typographical errors fixed. Version 3: a more reliable estimate for the decay rate of K-->pi+PNGB is provided, and the predicted rate for b-->s+PNGB is now include

    Complication prevalence following use of tutoplast-derived human acellular dermal matrix in prosthetic breast reconstruction: A retrospective review of 203 patients

    Get PDF
    SummaryUse of human acellular dermal matrix (ADM) during prosthetic breast reconstruction has increased. Several ADM products are available produced by differing manufacturing techniques. It is not known if outcomes vary with different products. This study reports the complication prevalence following use of a tutoplast-derived ADM (T-ADM) in prosthetic breast reconstruction. We performed a retrospective chart review of 203 patients (mean follow-up times 12.2 months) who underwent mastectomy and immediate prosthetic breast reconstruction utilizing T-ADM, recording demographic data, surgical indications and complication (infection, seroma, hematoma, wound healing exceeding three weeks and reconstruction failure). During a four-year period, 348 breast reconstructions were performed Complications occurred in 16.4% of reconstructed breasts. Infection occurred in 6.6% of breast reconstructions (3.7% – major infection, requiring intravenous antibiotics and 2.9% minor infection, requiring oral antibiotics only). Seromas occurred in 3.4% and reconstruction failure occurred in 0.6% of breast reconstructions. Analysis suggested that complication prevalence was significantly higher in patients with a BMI >30 (p = 0.03). The complication profile following T-ADM use is this series is comparable to that reported for with other ADM products. T-ADM appears to be a safe and acceptable option for use in ADM-assisted breast reconstruction

    Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB

    Full text link
    Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields ({\it e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.Comment: 29 pages including 13 figure

    EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope

    Get PDF
    We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 ± 0.05M o) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 ± 0.06M o) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2% of WDs are thought to be less than 0.3 M o), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (≈0.2R o) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T eff = 18,500 ± 500 K), and surface gravity () solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive

    Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that chi_2^0 two-body decay modes are usually closed. This means that dilepton mass edges-- the starting point for cascade decay reconstruction at the CERN LHC-- should be accessible over almost all of parameter space. Measurement of the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe.Comment: 29 pages including 19 eps figure

    Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass

    Full text link
    We observe that in SUSY models with non-universal GUT scale gaugino mass parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified value results in a smaller value of -m_{H_u}^2 at the weak scale. By the electroweak symmetry breaking conditions, this implies a reduced value of \mu^2 {\it vis \`a vis} models with gaugino mass unification. The lightest neutralino can then be mixed Higgsino dark matter with a relic density in agreement with the measured abundance of cold dark matter (DM). We explore the phenomenology of this high |M_2| DM model. The spectrum is characterized by a very large wino mass and a concomitantly large splitting between left- and right- sfermion masses. In addition, the lighter chargino and three light neutralinos are relatively light with substantial higgsino components. The higgsino content of the LSP implies large rates for direct detection of neutralino dark matter, and enhanced rates for its indirect detection relative to mSUGRA. We find that experiments at the LHC should be able to discover SUSY over the portion of parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark mass, while a 1 TeV electron-positron collider has a reach comparable to that of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt events at the LHC will likely show more than one mass edge, while its shape should provide indirect evidence for the large higgsino content of the decaying neutralinos.Comment: 36 pages with 26 eps figure

    Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches

    Get PDF
    In gravity-mediated SUSY breaking models with non-universal gaugino masses, lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and gluino masses. Lower third generation squark masses, in turn, diminish the effect of a large top quark Yukawa coupling in the running of the higgs mass parameter m_{H_u}^2, leading to a reduction in the magnitude of the superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter gives rise to mixed higgsino dark matter (MHDM), which can efficiently annihilate in the early universe to give a dark matter relic density in accord with WMAP measurements. We explore the phenomenology of the low |M_3| scenario, and find for the case of MHDM increased rates for direct and indirect detection of neutralino dark matter relative to the mSUGRA model. The sparticle mass spectrum is characterized by relatively light gluinos, frequently with m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can be much lighter than sbottom and first/second generation squarks. The presence of low mass higgsino-like charginos and neutralinos is expected at the CERN LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^- collider, the region of MHDM will mean that the entire spectrum of charginos and neutralinos are amongst the lightest sparticles, and are most likely to be produced at observable rates, allowing for a complete reconstruction of the gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure
    corecore